

### Transportation and Climate Change Resource Center

### REAL SOLUTIONS FOR CLIMATE CHANGE

### Climate Change 101: An Overview of Climate Change for State DOTS

**FEBRUARY 24, 2010** 

### Presenters:

### PAULA HAMMOND

Secretary of Washington State DOT and Chair of AASHTO Climate Change Steering Committee

### **CINDY BURBANK**

Vice President Climate Change Practice Leader, Parsons Brinckerhoff

### Overview

- I. Climate Change Science, Sources, and Trends
- II. The Importance of Climate Change to State DOTs
- III. Strategies to Reduce GHG Emissions from Transportation
- IV. Climate Adaptation for Transportation Agencies
- V. Climate Legislation and Policy







# I. Climate Change - Science,Sources and Trends









### What are the scientific findings?

Climate Change 2007: The Physical Science Basis

- Developed by the Intergovernmental Panel on Climate Change (IPCC)
- Contributions from 2,000 scientists assessing the Earth's environment and the effects of global warming

...a summary for policy makers...

There is 90% certainty that humans are the cause of global warming.



### Notable findings in the report:

- Atmospheric CO<sub>2</sub> levels are at their highest levels in 650,000 years.
- Average global temperatures have risen ~1.3°F since the industrial age began.
- Sea level rose ~4.8 8.8" worldwide during the 20th century, at a rate more than double that of the past decade







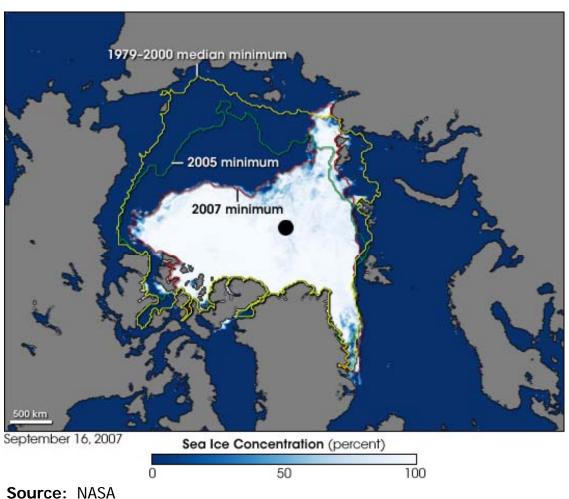
### How certain are the scientists?

REAL SOLUTIONS FOR CLIMATE CHANGE

"Warming of the climate system is unequivocal..."

-- Intergovernmental Panel on Climate Change

 "An overwhelming body of scientific evidence paints a clear picture: climate change is happening, it is caused in large part by human activity, and it will have many serious and potentially damaging effects in the decades ahead."


-- Pew Center on Climate Change

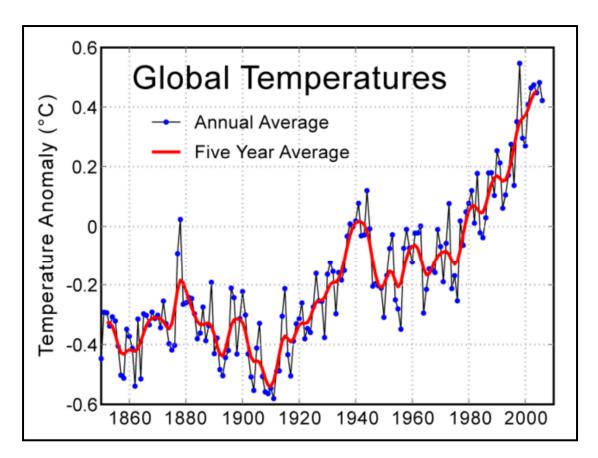






### What is the physical evidence?




- Arctic sea ice is retreating -
- a measurable change in climate that can be seen





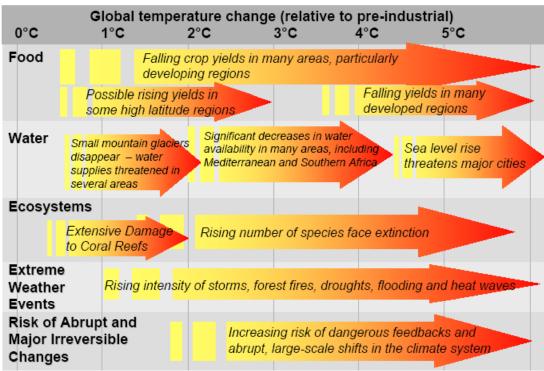


### What is the evidence on temperatures?



### Source:

http://www.globalwarmingart.com/wiki/Image:Instrumental\_Temperature\_Record\_png








# What are the impacts at different temperature increases?

### Projected impacts of climate change



### Source:

Stern Review, 2008







### How much GHG reduction is needed?

- Scientists recommend 60-80% GHG emission reduction below 1990 level by 2050
- Many states and countries have adopted targets in this range
- GHGs are cumulative, with a long half life (100 years)
- The longer we wait to make reductions, the deeper future cuts will have to be







# II. The Importance of Climate Change to State DOTs

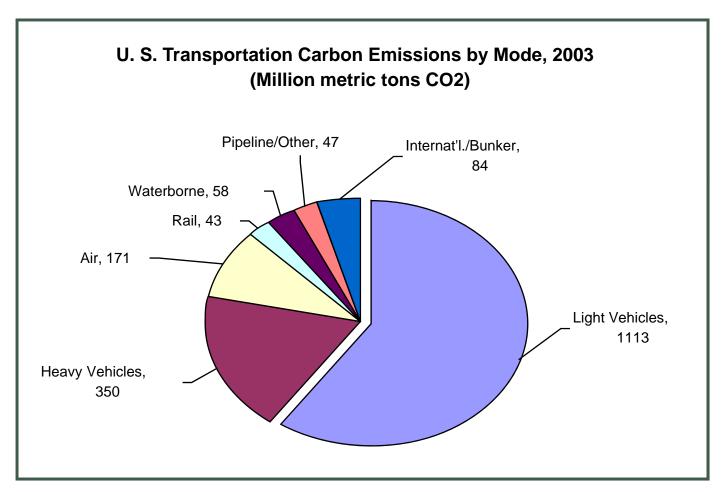








### A Three-Part Challenge to State DOTs


- 1. Reduce transportation GHG 60-80% by 2050
- 2. <u>Adapt transportation infrastructure</u> to rising sea levels, more severe storms, higher temperatures, and flooding
- 3. Find a new revenue stream suitable for low-carbon fuels

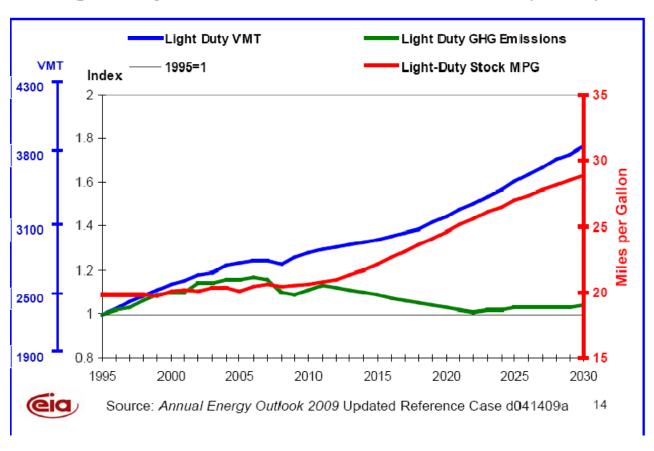






## Highway Vehicles Account for 82% of Transportation CO2 Emissions – and 23% of all U.S. CO2










# As VMT and MPG rise, GHG is nearly flat -- for Light Duty Vehicles

Light Duty VMT, MPG, and GHG Emissions (3 of 3)









## What should the GHG reduction target be for the transportation sector?

REAL SOLUTIONS FOR CLIMATE CHANGE

### • Economists:

- Reduce GHG emissions as cost-effectively as possible, even if that means much larger reductions in some sectors than others
- Evidence is accumulating that reducing transportation GHG 80% would be more costly than same % reduction in other sectors
- Ergo: Transportation GHG reduction targets probably should be lower

### Political reality:

- Transportation will be expected to contribute its "fair share"
- Room for debate about what "fair share" means.
- Often-cited goal is <u>60 to 80%</u> from current levels.







# III. Strategies to Reduce GHG Emissions from Transportation









### Five GHG Reduction "Legs"

REAL SOLUTIONS FOR CLIMATE CHANGE

### **Transportation GHG** reduction has <u>5 legs</u>:

- 1. Vehicles
- 2. Fuels
- 3. VMT
- 4. Operating Efficiency
- 5. Construction, Maintenance, and Agency Operations

### **Examples:**

- Higher CAFE standards
- CA's low carbon fuel standard
- Telework, trip-chaining
- ITS, Eco-driving
- LED traffic lights







## Vehicle/Fuel Improvements Will be the <u>Dominant</u> Source of GHG Reductions for LDVs

REAL SOLUTIONS FOR CLIMATE CHANGE

- 50% cut in GHG/mile is feasible from conventional technologies and biofuels by 2020-2030
- Compare these GHG rates in U.S. and Europe:

380 grams/mile 2009 in the U.S.
250 grams/mile 2016 under new Obama standard
256 grams/mile 2007 actual in the E.U.
209 grams/mile 2012 under E.U. regulation
153 grams/mile 2020 under E.U. regulation







### Vehicle "decarbonization" is essential

REAL SOLUTIONS FOR CLIMATE CHANGE

"In the long term, <u>carbon free road transport fuel is the only way to achieve</u> <u>an 80-90% reduction in emissions</u>, essentially "decarbonization."

--The King Review for the U.K. Government, by Professor Julia King, Vice-Chancellor of Aston University and former Director of Advanced Engineering at Rolls-Royce plc, March 2008

"[I]n the period beyond 2100, total GHG emissions will have to be just 20% of current levels. It is impossible to imagine this without decarbonization of the transport sector."

-- Sir Nicholas Stern, Stern Review to the U.K. Government, 2007







# Trends in developing world <u>underscore</u> the need for vehicle/fuel decarbonization

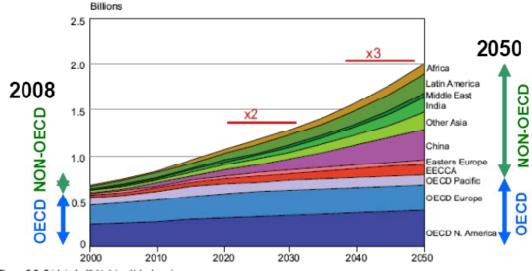



Figure 5.5: Total stock of light-duty vehicles by region Source: WBCSD, 2004s.

Source: WBCSD, 2004a: Mobility 2030: Meeting the Challenges to Sustainability

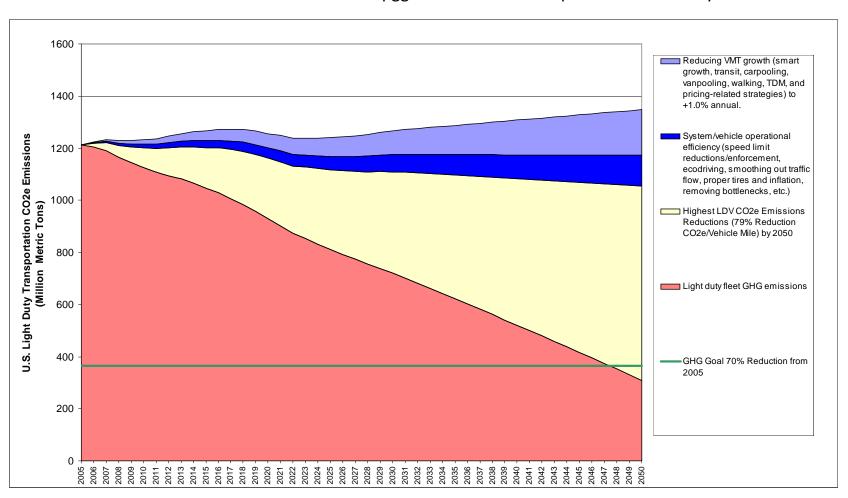






### Possible State DOT Roles in Decarbonization

- 1. Influence state policies on low-carbon fuels/vehicles
- Plan/provide plug-in infrastructure for electric and PHEV vehicles
- Support federal transportation funding for technology/fuel R&D
- 4. Educate the public
- 5. Provide incentives for consumers to use lower carbon fuels/vehicles (lower fees for low-carbon vehicles/fuels)
- 6. Use planning scenarios to emphasize need for decarbonization
- 7. Maximize use of low carbon vehicles/fuels in state DOT fleets



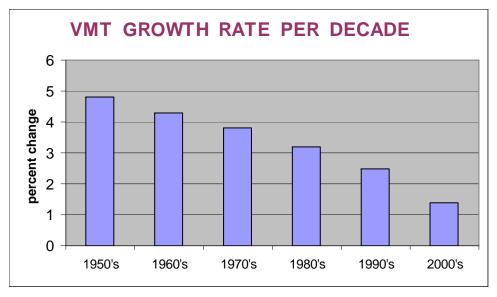





## One Scenario to Achieve 74% LDV GHG Reduction by 2050

1% Annual VMT Growth + 100 mpgge LDV Fleet + 10% Operational Efficiency










# U.S. VMT growth rates are declining—but will zero or negative VMT growth be expected?

- VMT growth has been steadily declining since the 1950s
- VMT growth slowed to about 1.5% in early 2000s
- AASHTO supports reducing VMT growth rate to 1% per year



Source: Alan Pisarski and Cambridge Systematics







### Many Strategies to Reduce LDV VMT

- Economy-wide carbon cap and trade (raises fuel prices)
- Transportation pricing (PAYD insurance, parking pricing, tolls, higher user fees, cordon pricing, congestion pricing, etc.)
- Carpooling and vanpooling
- Bike/ped
- Transit in high density corridors
- Trip chaining
- Tele-working, tele-shopping, tele-education, tele-medicine
- Compact land use







### Pricing – A Necessary and Powerful Tool

- Without price signals, trying to reduce GHG is swimming upstream
- Pricing encourages many helpful changes:
  - Consumer purchase of lower-carbon vehicles and fuels
  - Business investment in low-GHG technology
  - Lower VMT
  - Eco-driving
  - More efficient land use
- Many different pricing tools available: auto "feebates," carbon/fuel prices,
   PAYD insurance, mileage fees, parking pricing, congestion pricing, etc.
- Pricing produces revenue to invest in alternatives







## CO<sub>2</sub>e Emissions Per Passenger Mile for Various Modes

| NAMES ON A LAYER A CIE                            | TO T                                 | 4 •4•                                     | T 1                    |                                                                  |
|---------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------|------------------------------------------------------------------|
| NATIONAL AVERAGE                                  | <b>Energy Intensities</b>            |                                           | Load<br>Factor         | CO <sub>2</sub> e                                                |
|                                                   | (Btu or<br>kWhr per<br>vehicle mile) | (Btu or<br>kWhr per<br>passenger<br>mile) | Persons<br>Per Vehicle | (Estimated<br>Pounds CO <sub>2</sub> e<br>Per Passenger<br>Mile) |
| Single Occupancy Vehicle (SOV) LDVs               | 5,987                                | 5,987                                     | 1.00                   | 0.99                                                             |
| Personal Trucks at Average Occupancy              | 6,785                                | 4,329                                     | 1.72                   | 0.71                                                             |
| Transit Bus                                       | 37,310                               | 4,318                                     | 8.80                   | 0.71                                                             |
| Cars at Average Occupancy                         | 5,514                                | 3,496                                     | 1.57                   | 0.58                                                             |
| Electric Trolley Bus                              | 5.2                                  | 0.39                                      | 13.36                  | 0.52                                                             |
| High Occupancy Vehicle (HOV) LDVs at 2+ Occupancy | 5,987                                | 2,851                                     | 2.10                   | 0.47                                                             |
| Intercity Rail (Amtrak)                           | 54,167                               | 2,760                                     | 20.50                  | 0.39                                                             |
| Light and Heavy Rail Transit                      | 62,797                               | 2,750                                     | 22.50                  | 0.39                                                             |
| Motorcycles                                       | 2,226                                | 2,272                                     | 1.20                   | 0.37                                                             |
| Commuter Rail                                     | 92,739                               | 2,569                                     | 31.30                  | 0.36                                                             |
| Vanpool                                           | 8,048                                | 1,294                                     | 6.10                   | 0.21                                                             |
| Walking or Biking                                 | -                                    | -                                         | 1.00                   | 0.00                                                             |
| REGIONAL EXAMPLE<br>(SEATTLE/PUGET SOUND REGION)  | Energy Intensities                   |                                           | Load<br>Factor         | CO <sub>2</sub> e                                                |
|                                                   | (Btu or<br>kWhr per<br>vehicle mile) | (Btu or<br>kWhr per<br>passenger<br>mile) | Persons<br>Per Vehicle | (Estimated<br>Pounds CO <sub>2</sub> e<br>Per Passenger<br>Mile) |
| Cars (64%) and Personal Trucks (36%) at Average   |                                      |                                           |                        |                                                                  |
| Occupancy                                         | 5,987                                | 4,468                                     | 1.34                   | 0.74                                                             |
| King County Metro Diesel and Hybrid Buses         | 33,024                               | 2,854                                     | 11.57                  | 0.47                                                             |
| Sound Transit Buses                               | 33,024                               | 2,517                                     | 13.12                  | 0.42                                                             |
| King County Electrically-Powered Trolley Buses    | 5.33                                 | 0.44                                      | 12.12                  | 0.11                                                             |







### Carpooling and Vanpooling

- Important but not appreciated (carpools/vanpools provide far more passenger miles than transit)
- Low cost for government, wide availability, saves users money
- Effective in all kinds of areas rural, small urban, suburban, urban
- Near term payoff
- Atlanta and DC MPOs pay for commuters to carpool (\$2/day)







## Transit helps reduce GHG – but 1-2% effect nationally

- Transit serves many different goals, has broad support
- But as a national GHG strategy:
  - Transit serves 1% of PMT and 0% freight in the U.S.
  - DOE: Bus transit has higher GHG/passenger mile traveled than average auto use
  - APTA studies: (a) Transit reduced GHG by 6.9 MMT in 2005; or (b) by 35 MMT in 2005. This is 0.3% to 1.7% of U.S. transportation GHG
- Transit GHG benefits are realized with highly patronized services in high volume corridors -- a market limited to high volume, generally densely developed corridors







## Land Use Effect on GHG Depends on Assumptions -- 3 studies, 3 results

- "Growing Cooler": 3.5-5% reduction in transportation GHG, 2007-2050, with aggressive assumptions about land use change:
  - 67% of all development in place in 2050 will be constructed or rehabbed after 2005
  - 60-90% of that development is compact (13 housing-units per acre)
  - Compact development has 30% less VMT than very sprawling development
- "Moving Cooler": 2% on-road GHG reduction cumulatively, 2010-2040, if 90% of new urban land use is compact, bike/ped friendly, with high quality transit
- 2009 TRB study: <1 to 11%\* reduction in passenger LDV GHG in the year 2050 from compact land use





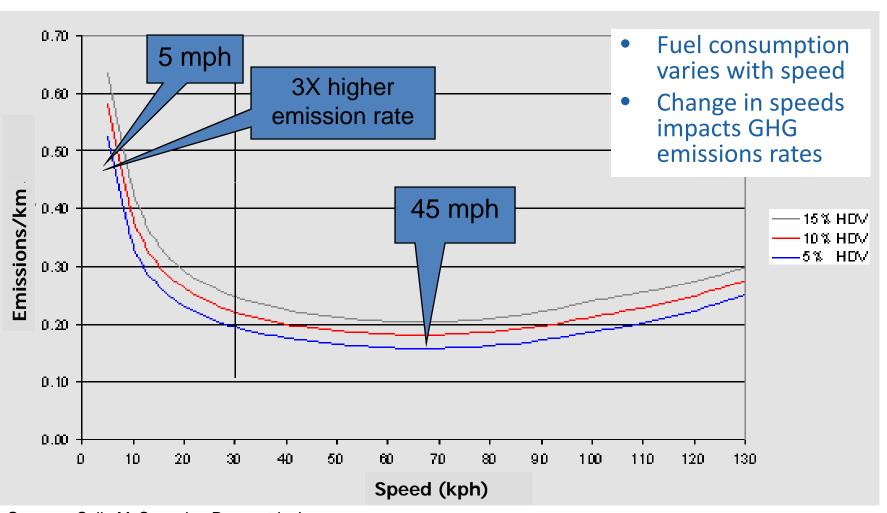


<sup>\*</sup> TRB panel split on whether 11% is possible

### Vehicle/System Operations to Reduce GHG

REAL SOLUTIONS FOR CLIMATE CHANGE

### Potential for 10-20% LDV GHG reduction by:


- Managing speed (35-55 MPH is optimal)
- Speed limits/enforcement (could reduce fuel use 2-4%)
- Eliminating bottlenecks
- "Active" traffic management to smooth traffic flow
- Improving signal timing (could reduce 1.315 MMT CO<sub>2</sub>/yr)
- Roundabouts (multiple benefits)
- Reducing car and truck idling
- Work zone management to smooth flow
- Encouraging eco-driving







### How does speed affect GHG?



Source: Colin McConnaha, Parametrix, Inc.







### Eco-Driving – 15% GHG Reduction Potential

- EcoDrivers can reduce fuel and CO2 by an average of 15% through smart driving and vehicle maintenance
- If 50% of drivers practice EcoDriving, CO2 would drop by 100 million tons annually (the equivalent of heating and powering 8.5 million households)
- Pilot by City of Denver with 300 drivers achieved 10% fuel reduction and similar GHG reduction
- Useful for HDV, MDV, and LDV drivers
- Major push in Europe as GHG strategy
- Aided by dashboard displays of real-time MPG & other "smart" technology







### www.EcoDrivingUSA.com

- EcoDrivingUSA™: A nationwide effort to increase overall vehicle fuel economy and preserve the environment
- Partnership of state Governors, environmental organizations, auto industry
- More info on EcoDrivingUSA™: www.EcoDrivingUSA.com
  - Be an EcoDriver
  - EcoCalculator
  - EcoDriving Quiz
  - Virtual Road Test
  - Is Your Community EcoDriving?
  - Educational Tools
  - News and Events
  - Join the EcoDriving Movement
- Compare these GHG reductions in "Moving Cooler," for 2010-2050:
  - 1,815 MMT If 20% of drivers adopt ecodriving
  - 1,445 MMT If at least 90% of new urban development is compact, bike-ped friendly, with high-quality transit





